quactuary.mcp package¶
The quActuary MCP (Model Context Protocol) Server provides integration with Claude and other LLM assistants, exposing actuarial tools through a standardized interface.
Overview¶
The MCP server allows you to use quActuary’s actuarial modeling capabilities directly within Claude conversations. It provides tools for:
Running pricing simulations
Working with probability distributions
Managing portfolios and policy terms
Performing actuarial calculations
Usage¶
Starting the MCP Server¶
# Using the command-line interface
quactuary-mcp
# Or as a Python module
python -m quactuary.mcp.server
Configuration¶
The server can be configured in Claude Desktop’s settings:
{
"mcpServers": {
"quactuary": {
"command": "python",
"args": ["-m", "quactuary.mcp.server"],
"env": {}
}
}
}
Submodules¶
quactuary.mcp.server module¶
quactuary.mcp.tools module¶
quactuary.mcp.resources module¶
quactuary.mcp.prompts module¶
quactuary.mcp.categories module¶
quactuary.mcp.formats module¶
quactuary.mcp.config module¶
quactuary.mcp.base module¶
Tool Categories¶
The MCP server organizes tools into the following categories:
- Pricing Tools
run_pricing_simulation: Execute pricing model simulations
calculate_premium: Calculate premiums for policies
estimate_reserves: Estimate reserves for portfolios
- Distribution Tools
create_distribution: Create frequency or severity distributions
fit_distribution: Fit distributions to data
sample_distribution: Generate samples from distributions
- Portfolio Tools
create_portfolio: Build insurance portfolios
analyze_portfolio: Analyze portfolio metrics
optimize_portfolio: Optimize portfolio allocations
- Utility Tools
calculate_metrics: Compute actuarial metrics
generate_reports: Generate actuarial reports
validate_inputs: Validate input parameters
Examples¶
Using MCP Tools in Claude¶
Once the MCP server is running and configured, you can use it in Claude conversations:
User: Run a pricing simulation for a GL policy with Poisson(3.5) frequency
and Exponential(1000) severity, with a $1M deductible.
Claude: I'll run a pricing simulation for your GL policy using the MCP tools...
[Uses run_pricing_simulation tool]
Creating Custom Tools¶
You can extend the MCP server with custom tools:
from quactuary.mcp.base import QuactuaryTool
from quactuary.mcp.categories import ToolCategory
class CustomActuarialTool(QuactuaryTool):
category = ToolCategory.UTILITIES
def execute(self, params):
# Your custom implementation
return {"result": "Custom calculation"}